Printed Pages: 3

CS-302

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID: 997302										
Roll No.										

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15
DISCRETE STRUCTURES

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all the questions. Each question carry equal marks.

1 Attempt any FOUR questions:

- $5 \times 4 = 20$
- (a) Out of 450 students in a school, 193 students read Science and 200 students read Commerce, 80 Students read neither. Find out how many read both?
- (b) Define distributive lattice and complimented lattice. Show that the lattice (L^3 , \leq) of 3 tuples of 0 and 1 is complemented.
- (c) Let R be relation given by on set A= {1, 2, 3, 4, 5}.

 R={(1,1),(1,4),(1,5),(2,3),(2,5),(3,1),(3,2),(3,3),
 (4, 2),(4,3),(5,3)}. Find the reflexive, Symmetric and transitive closure of R.

- (d) Let f, g and $h: R \to R$ be defined by f(x)=x+2, $g(x)=1/(x^2+1)$, h(x)=3Compute (i) $f^1(g(x))$ (ii) $hf(gf^1).h(f(x))$.
- (e) Prove by the principle of mathematical induction $P(x) = P(x) 1 + 4 + 7 + \dots + (2 x) = \frac{n(3n-1)}{n(3n-1)}$

P(n):
$$P(n) = 1 + 4 + 7 + \dots + (3n-2) = \frac{n(3n-1)}{2}$$
.

- 2 Attempt any TWO questions: 10×2=20
 - (a) Let (G,*) be a group, where * is usual multiplication operation on G. Then show that for any $x,y \in G$, following equation holds
 - (i) $(x^{-1})^{-1} = x$
 - (ii) $(xy)^{-1} = y^{-1}x^{-1}$.
 - (b) (i) Prove that the set S= {0, 1, 2, 3} forms a ring under addition and multiplication modulo 4 but not a field.
 - (ii) Define the following with suitable example: Cyclic group, Zero divisor of ring.
 - (c) Let $G = \{1,-1, i, -i\}$ with the binary operation multiplication be an algebraic structure, where $i^2 = -1$,
 - (i) Determine whether G is an abelian.
 - (ii) If G is cyclic group, then determine the generator of G.
- 3 Attempt any TWO questions: 10×2=20 (a) Define a Boolean function of degree n. Simplify the
 - (a) Define a Boolean function of degree n. Simplify the following Boolean expression using K- maps xyz + x~yz + ~x~yz + ~xvz + ~x~y~z.
 - (b) Draw hasse diagram for divisibility relation on following set $A = \{3, 4, 12, 24, 48, 72\}$
 - (c) How are sequential circuits different from combinational circuits? Draw the logic circuit corresponding to Boolean expression Y = A + BC +B.

4 Attempt any TWO questions:

- $10 \times 2 = 20$
- (a) (i) Differentiate between tautology and contradiction with suitable examples.
 - (ii) Show that the statements:
 - $P \rightarrow Q$ and $_{\ \ \ }Q \rightarrow _{\ \ \ \ }P$ are logically equivalence.
- (b) Prove the validity of the following argument:

 If I get the job and work hard then I will get promoted.

 if I will get promoted, then I will be happy. I will not be happy therefore either I will not get the job or I will not work hard.
- (c) The contrapositive of a statement S is given as "If x<2 then x+4 < 6" Write the statement S and its converse.
- 5 Attempt any FOUR questions:

- 5×4=20
- (a) Solve the recurrence relation. f(k)=f(k-2)+f(k-1) f(0) = 0 f(1)=1
- (b) What is recursion and recurrence relation? Solve the following recurrence relation

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$$
, with the conditions $a0 = 2$, $a1 = 5$, $a2 = 15$

(c) Determine the GF of a numeric function a where

$$a_r = \begin{cases} 2^r & \text{if } r \text{ is even} \\ -2^r & \text{if } r \text{ is odd} \end{cases}$$

- (d) Find the number of integer solutions of the equation X1 + X2 + X3 + X4 + X5 = 30Where X1>=2, X2>=3, X3>=4, X4>=2, X5>=0
- (e) What is a binary search tree? Form a binary search tree for the words vireo, warbler, egret, grosbeak, nuthatch, and kingfisher.